Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Influenza Other Respir Viruses ; 17(6): e13144, 2023 06.
Article in English | MEDLINE | ID: covidwho-20244279

ABSTRACT

New immune evasive variants of SARS-CoV-2 continue to emerge, potentially causing new waves of covid-19 disease. Here, we evaluate levels of neutralizing antibodies against isolates of Omicron variants, including BQ.1.1 and XBB, in sera harvested 3-4 weeks after vaccination or breakthrough infections. In addition, we evaluate neutralizing antibodies in 32 sera from October 2022, to evaluate immunity in Norwegian donors prior to the winter season. Most serum samples harvested in October 2022 had low levels of neutralizing antibodies against BQ.1.1 and especially XBB, explaining why these variants and their descendants have dominated in Norway during the 2022 and 2023 winter season.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Norway/epidemiology , Antibodies, Neutralizing , Antibodies, Viral
2.
Int J Infect Dis ; 130: 182-188, 2023 May.
Article in English | MEDLINE | ID: covidwho-2285404

ABSTRACT

OBJECTIVES: We estimated the BNT162b2 vaccine effectiveness (VE) against any (symptomatic or not) SARS-CoV-2 Delta and Omicron infection among adolescents (aged 12-17 years) in Norway from August 2021 to January 2022. METHODS: We used Cox proportional hazard models, where vaccine status was included as a time-varying covariate and models were adjusted for age, sex, comorbidities, residence county, birth country, and living conditions. RESULTS: The VE against Delta infection peaked at 68% (95% confidence interval [CI]: 64-71%) and 62% (95% CI: 57-66%) in days 21-48 after the first dose among those aged 12-15 years and 16-17 years, respectively. Among those aged 16-17 years who received two doses, the VE against Delta infection peaked at 93% (95% CI: 90-95%) in days 35-62 and decreased to 84% (95% CI: 76-89%) in ≥63 days after vaccination. We did not observe a protective effect against Omicron infection after receiving one dose. Among those aged 16-17 years, the VE against Omicron infection peaked at 53% (95% CI: 43-62%) in 7-34 days after the second dose and decreased to 23% (95% CI: 3-40%) in ≥63 days after vaccination. CONCLUSION: We found a reduced protection after two BNT162b2 vaccine doses against any Omicron infection compared to Delta. Effectiveness decreased with time from vaccination for both variants. The impact of vaccination among adolescents on reducing infection and thus transmission is limited during the Omicron dominance.


Subject(s)
COVID-19 , Hepatitis D , Vaccines , Adolescent , Humans , BNT162 Vaccine , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Norway/epidemiology
3.
Viruses ; 14(12)2022 12 07.
Article in English | MEDLINE | ID: covidwho-2155309

ABSTRACT

Extensive genomic surveillance has given great insights into the evolution of the SARS-CoV-2 virus and emerging variants. During the summer months of 2021, Norway was dominated by the Pango lineage AY.63 which is a sub-lineage of the highly transmissible Delta variant. Strikingly, AY.63 did not spread in other countries to any significant extent. AY.63 carried a key mutation, A222V, in the spike protein, as well as the deletion of three residues in nsp1. Although these mutations are close to functionally important areas, we did not find any evidence that they induced higher fitness compared to other Delta lineages. This variant was introduced to Norway at a time when there were low levels of SARS-CoV-2 and contact-reducing measures were relaxed, which probably explains why the lineage rose so quickly. Furthermore, we found that the lack of imports of AY.63 from other countries probably led to the eventual demise of the lineage in Norway.


Subject(s)
COVID-19 , Humans , Molecular Epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Norway/epidemiology
4.
Scand J Public Health ; 50(6): 676-682, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1923466

ABSTRACT

Using individual-level national registry data, we conducted a cohort study to estimate differences in the length of hospital stay, and risk of admission to an intensive care unit and in-hospital death among patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, compared with patients infected with Delta variant in Norway. We included 409 (38%) patients infected with Omicron and 666 (62%) infected with Delta who were hospitalised with coronavirus disease 2019 (COVID-19) as the main cause of hospitalisation between 6 December 2021 and 6 February 2022. Omicron patients had a 48% lower risk of intensive care admission (adjusted hazard ratios (aHR): 0.52, 95% confidence interval (CI): 0.34-0.80) and a 56% lower risk of in-hospital death (aHR: 0.44, 95%CI: 0.24-0.79) compared with Delta patients. Omicron patients had a shorter length of stay (with or without ICU stay) compared with Delta patients in the age groups from 18 to 79 years and those who had at least completed their primary vaccination. This supports growing evidence of reduced disease severity among hospitalised Omicron patients compared with Delta patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Cohort Studies , Hospital Mortality , Humans , Middle Aged , Young Adult
5.
Int J Infect Dis ; 118: 10-20, 2022 May.
Article in English | MEDLINE | ID: covidwho-1693387

ABSTRACT

OBJECTIVE: To improve understanding of SARS-CoV-2-transmission and prevention measures on cruise ships, we investigated a Norwegian cruise ship outbreak from July to August 2020 using a multidisciplinary approach after a rapid outbreak response launched by local and national health authorities. METHODS: We conducted a cross-sectional study among crew members using epidemiologic data and results from SARS-CoV-2 polymerase chain reaction (PCR) of nasopharynx-oropharynx samples, antibody analyses of blood samples, and whole-genome sequencing. RESULTS: We included 114 multinational crew members (71% participation), median age 36 years, and 69% male. The attack rate was 33%; 32 of 37 outbreak cases were seropositive 5-10 days after PCR. One PCR-negative participant was seropositive, suggesting a previous infection. Network-analysis showed clusters based on common exposures, including embarkation date, nationality, sharing a cabin with an infected cabin-mate (adjusted odds ratio [AOR] 3.27; 95% confidence interval [CI] 0.97-11.07, p = 0.057), and specific workplaces (mechanical operations: 9.17 [1.82-45.78], catering: 6.11 [1.83-20.38]). Breaches in testing, quarantine, and isolation practices before/during expeditions were reported. Whole-genome sequencing revealed lineage B.1.36, previously identified in Asia. Despite extensive sequencing, the continued transmission of B.1.36 in Norway was not detected. CONCLUSIONS: Our findings confirm the high risk of SARS-CoV-2-transmission on cruise ships related to workplace and cabin type and show that continued community transmission after the outbreak could be stopped by implementing immediate infection control measures at the final destination.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Female , Humans , Immunity , Male , Risk Factors , SARS-CoV-2/genetics , Ships
6.
Euro Surveill ; 26(50)2021 Dec.
Article in English | MEDLINE | ID: covidwho-1591908

ABSTRACT

In late November 2021, an outbreak of Omicron SARS-CoV-2 following a Christmas party with 117 attendees was detected in Oslo, Norway. We observed an attack rate of 74% and most cases developed symptoms. As at 13 December, none have been hospitalised. Most participants were 30-50 years old. Ninety-six percent of them were fully vaccinated. These findings corroborate reports that the Omicron variant may be more transmissible, and that vaccination may be less effective in preventing infection compared with Delta.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Disease Outbreaks , Humans , Middle Aged , Norway/epidemiology
7.
Int J Infect Dis ; 115: 178-184, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1598965

ABSTRACT

OBJECTIVES: To estimate the risk of hospitalization among reported cases of the Delta variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) compared with the Alpha variant in Norway, and the risk of hospitalization by vaccination status. METHODS: A cohort study was conducted on laboratory-confirmed cases of SARS-CoV-2 in Norway, diagnosed between 3 May and 15 August 2021. Adjusted risk ratios (aRR) with 95% confidence intervals (CI) were calculated using multi-variable log-binomial regression, accounting for variant, vaccination status, demographic characteristics, week of sampling and underlying comorbidities. RESULTS: In total, 7977 cases of the Delta variant and 12,078 cases of the Alpha variant were included in this study. Overall, 347 (1.7%) cases were hospitalized. The aRR of hospitalization for the Delta variant compared with the Alpha variant was 0.97 (95% CI 0.76-1.23). Partially vaccinated cases had a 72% reduced risk of hospitalization (95% CI 59-82%), and fully vaccinated cases had a 76% reduced risk of hospitalization (95% CI 61-85%) compared with unvaccinated cases. CONCLUSIONS: No difference was found between the risk of hospitalization for Delta cases and Alpha cases in Norway. The results of this study support the notion that partially and fully vaccinated cases are highly protected against hospitalization with coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Hospitalization , Humans , Norway/epidemiology
8.
Microorganisms ; 9(12)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1572564

ABSTRACT

The role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in schools has been a topic of controversy. In this study among school contacts of SARS-CoV-2 positive children in 43 contact-investigations, we investigated SARS-CoV-2 transmission in Norway, August 2020-May 2021. All participants were tested twice within seven to ten days, using SARS-CoV-2 PCR on home-sampled saliva. Positive samples were whole genome sequenced. Among the 559 child contacts, eight tested positive (1.4%, 95% CI 0.62-2.80), with no significant difference between primary (1.0%, 95% CI 0.27-2.53) and secondary schools (2.6%, 95% CI 0.70-6.39), p = 0.229, nor by viral strain, non-Alpha (1.4%, 95% CI 0.50-2.94) and Alpha variant (B.1.1.7) (1.7%, 95% CI 0.21-5.99), p = 0.665. One adult contact (1/100) tested positive. In 34 index cases, we detected 13 different SARS-CoV-2 Pango lineage variants, with B.1.1.7 being most frequent. In the eight contact-investigations with SARS-CoV-2 positive contacts, four had the same sequence identity as the index, one had no relation, and three were inconclusive. With mitigation measures in place, the spread of SARS-CoV-2 from children in schools is limited. By excluding contact-investigations with adult cases known at the time of enrolment, our data provide a valid estimate on the role of children in the transmission of SARS-CoV-2 in schools.

9.
Virus Evol ; 7(2): veab086, 2021.
Article in English | MEDLINE | ID: covidwho-1475845

ABSTRACT

As the COVID-19 pandemic swept through an immunologically naïve human population, academics and public health professionals scrambled to establish methods and platforms for genomic surveillance and data sharing. This offered a rare opportunity to study the ecology and evolution of SARS-CoV-2 over the course of the ongoing pandemic. Here, we use population genetic and phylogenetic methodology to characterize the population dynamics of SARS-CoV-2 and reconstruct patterns of virus introductions and local transmission in Norway against this backdrop. The analyses demonstrated that the epidemic in Norway was largely import driven and characterized by the repeated introduction, establishment, and suppression of new transmission lineages. This pattern changed with the arrival of the B.1.1.7 lineage, which was able to establish a stable presence concomitant with the imposition of severe border restrictions.

10.
PLoS One ; 16(10): e0258513, 2021.
Article in English | MEDLINE | ID: covidwho-1463324

ABSTRACT

INTRODUCTION: Since their emergence, SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.351 have spread worldwide. We estimated the risk of hospitalisation and admission to an intensive care unit (ICU) for infections with B.1.1.7 and B.1.351 in Norway, compared to infections with non-VOC. MATERIALS AND METHODS: Using linked individual-level data from national registries, we conducted a cohort study on laboratory-confirmed cases of SARS-CoV-2 in Norway diagnosed between 28 December 2020 and 2 May 2021. Variants were identified based on whole genome sequencing, partial sequencing by Sanger sequencing or PCR screening for selected targets. The outcome was hospitalisation or ICU admission. We calculated adjusted risk ratios (aRR) with 95% confidence intervals (CIs) using multivariable binomial regression to examine the association between SARS-CoV-2 variants B.1.1.7 and B.1.351 with i) hospital admission and ii) ICU admission compared to non-VOC. RESULTS: We included 23,169 cases of B.1.1.7, 548 B.1.351 and 4,584 non-VOC. Overall, 1,017 cases were hospitalised (3.6%) and 206 admitted to ICU (0.7%). B.1.1.7 was associated with a 1.9-fold increased risk of hospitalisation (aRR 95%CI 1.6-2.3) and a 1.8-fold increased risk of ICU admission (aRR 95%CI 1.2-2.8) compared to non-VOC. Among hospitalised cases, no difference was found in the risk of ICU admission between B.1.1.7 and non-VOC. B.1.351 was associated with a 2.4-fold increased risk of hospitalisation (aRR 95%CI 1.7-3.3) and a 2.7-fold increased risk of ICU admission (aRR 95%CI 1.2-6.5) compared to non-VOC. DISCUSSION: Our findings add to the growing evidence of a higher risk of severe disease among persons infected with B.1.1.7 or B.1.351. This highlights the importance of prevention and control measures to reduce transmission of these VOC in society, particularly ongoing vaccination programmes, and preparedness plans for hospital surge capacity.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Critical Care/methods , Hospitalization , Patient Admission , Registries , SARS-CoV-2/genetics , Adolescent , Adult , Aged , COVID-19/virology , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Intensive Care Units , Male , Middle Aged , Norway/epidemiology , Real-Time Polymerase Chain Reaction/methods , Risk , Whole Genome Sequencing/methods , Young Adult
11.
Euro Surveill ; 26(35)2021 09.
Article in English | MEDLINE | ID: covidwho-1394718

ABSTRACT

Some variants of SARS-CoV-2 are associated with increased transmissibility, increased disease severity or decreased vaccine effectiveness (VE). In this population-based cohort study (n = 4,204,859), the Delta variant was identified in 5,430 (0.13%) individuals, of whom 84 were admitted to hospital. VE against laboratory confirmed infection with the Delta variant was 22.4% among partly vaccinated (95% confidence interval (CI): 17.0-27.4) and 64.6% (95% CI: 60.6-68.2) among fully vaccinated individuals, compared with 54.5% (95% CI: 50.4-58.3) and 84.4% (95%CI: 81.8-86.5) against the Alpha variant.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Cohort Studies , Humans , Norway/epidemiology , SARS-CoV-2
13.
Euro Surveill ; 26(22)2021 06.
Article in English | MEDLINE | ID: covidwho-1259313

ABSTRACT

BackgroundIn mid-March 2020, a range of public health and social measures (PHSM) against the then new coronavirus disease (COVID-19) were implemented in Denmark, Norway and Sweden.AimWe analysed the development of influenza cases during the implementation of PHSM against SARS-CoV-2 in the Scandinavian countries.MethodBased on the established national laboratory surveillance of influenza, we compared the number of human influenza cases in the weeks immediately before and after the implementation of SARS-CoV-2 PHSM by country. The 2019/20 influenza season was compared with the five previous seasons.ResultsA dramatic reduction in influenza cases was seen in all three countries, with only a 3- to 6-week duration from the peak of weekly influenza cases until the percentage dropped below 1%. In contrast, in the previous nine influenza seasons, the decline from the seasonal peak to below 1% of influenza-positive samples took more than 10 weeks.ConclusionsThe PHSM against SARS-CoV-2 were followed by a dramatic reduction in influenza cases, indicating a wider public health effect of the implemented measures.


Subject(s)
COVID-19 , Influenza, Human , Denmark/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Norway/epidemiology , SARS-CoV-2 , Scandinavian and Nordic Countries , Seasons , Sweden/epidemiology
14.
J Clin Virol ; 137: 104789, 2021 04.
Article in English | MEDLINE | ID: covidwho-1126918

ABSTRACT

BACKGROUND: Rapid antigen tests (RATs) may be included in national strategies for handling the SARS-CoV-2 pandemic, as they provide test results rapidly, are easily performed outside laboratories, and enable immediate contract tracing. However, before implementation further clinical evaluation of test sensitivity is warranted. OBJECTIVES: To examine the performance of Abbott's Panbio™ COVID-19 Ag Rapid Test Device for SARS-CoV-2 testing in a low to medium prevalence setting in Norway. STUDY DESIGN: A prospective study comparing the results of the Panbio RAT with PCR in 4857 parallel samples collected at a SARS-CoV-2 test station in Oslo, and from COVID-19 outbreaks in six Norwegian municipalities. RESULTS: A total of 4857 cases were included in the study; 3991 and 866 cases from the test station and the outbreak municipalities, respectively. The prevalence at the test station in Oslo was 6.3 %, and the overall sensitivity of the RAT was 74 %. Increased sensitivity was observed in patients who experienced symptoms (79 %) and when considering samples with viral loads above estimated level of infectivity (84 %), while it was lower in asymptomatic persons (55 %). In the outbreak municipalities, the overall prevalence was 6.9 %, and the total sensitivity of the RAT was 70 %. CONCLUSIONS: Our results indicate that the test correctly identified most infectious individuals. Nevertheless, the sensitivity is considerably lower than for PCR, and it is important that the limitations of the test are kept in mind in the follow-up of tested individuals.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Testing/methods , False Negative Reactions , False Positive Reactions , Humans , Norway/epidemiology , Prospective Studies , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Load
15.
Euro Surveill ; 26(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1067620

ABSTRACT

An intense debate on school closures to control the COVID-19 pandemic is ongoing in Europe. We prospectively examined transmission of SARS-CoV-2 from confirmed paediatric cases in Norwegian primary schools between August and November 2020. All in-school contacts were systematically tested twice during their quarantine period. With preventive measures implemented in schools, we found minimal child-to-child (0.9%, 2/234) and child-to-adult (1.7%, 1/58) transmission, supporting that under 14 year olds are not the drivers of SARS-CoV-2 transmission.


Subject(s)
COVID-19/transmission , Contact Tracing , Schools , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Child , Child, Preschool , Female , Humans , Male , Norway/epidemiology , Physical Distancing , Prospective Studies , Quarantine
16.
Scand J Prim Health Care ; 39(1): 31-34, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1066083

ABSTRACT

Objective: We aim to discuss whether preventive quarantine can mitigate the spread of Covid-19 during the pandemic. Design: We did a cross-sectional, observational study design in a mass-screening program in the enrolment to the Norwegian military during April 19-28th 2020 (COVID-NOR-MIL). Subjects: 1170 presumptively healthy young Norwegian conscripts. Setting: A structured interview encouraged the coming conscripts to a self-imposed preventive quarantine the last two weeks before enrolment. Main outcome measures: All conscripts underwent a PCR-based test with nasopharyngeal swabs at the day of enrolment. Results: Only two tested positive. The study discusses the predictive value of the RT-PCR test and the risk of false positive and false negative results, particularly when using the test in a low-prevalent cohort, even if the test properties of sensitivity and specificity is almost 100%. Further, the study discusses the challenge of whether a positive SARS-CoV-2 PCR-test represent viable and contagious virus or only viral remnants. Conclusion: The adherence to self-imposed preventive quarantine is a challenge and is a subject to further research. Implications: We want to draw the attention to the potential value of a thorough pre-screening processes and self-imposed preventive quarantine to minimize the potential spread of SARS-Cov-2.


Subject(s)
COVID-19/prevention & control , Mass Screening , Military Personnel , Pandemics/prevention & control , Quarantine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Cohort Studies , Cross-Sectional Studies , Humans , Norway/epidemiology , Prevalence , Program Evaluation , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
17.
Tidsskr Nor Laegeforen ; 140(18)2020 12 15.
Article in English, Norwegian | MEDLINE | ID: covidwho-979160

ABSTRACT

BACKGROUND: The first case of SARS-CoV-2 infection in Norway was confirmed on 26 February 2020. Following sharpened advice on general infection control measures at the beginning of the outbreak, extensive national control measures were implemented on 12 March, and testing was focused on those with severe illness. We describe the first six weeks of the outbreak in Norway, viewed in light of testing criteria and control measures. MATERIAL AND METHOD: We described all laboratory-confirmed cases of COVID-19 reported to three different surveillance systems under the Norwegian Institute of Public Health up to 5 April 2020, and compared cases reported up to 12 March with those reported from 13 March. RESULTS: By 12 March, 1 128 cases had been reported. Their median age was 47 years, 64 % were male, 66 % had travelled abroad, 6 % were hospitalised at the time of reporting, and < 1 % had died. The median age of the 4 742 cases reported from 13 March was 48 years, 47 % were male, 18 % had travelled abroad, 15 % were hospitalised, and 3 % died. INTERPETATION: The distribution of COVID-19 cases before and after 12 March reflects different phases of the outbreak. However, findings must be interpreted in the light of criteria for testing, testing activity, control measures and characteristics of surveillance systems.


Subject(s)
COVID-19/epidemiology , Pandemics , Female , Humans , Male , Middle Aged , Norway/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL